Nitrate enrichment alters a Daphnia–microparasite interaction through multiple pathways

نویسندگان

  • Tad Dallas
  • John M Drake
چکیده

Nutrient pollution has the potential to alter many ecological interactions, including host-parasite relationships. One of the largest sources of nutrient pollution comes from anthropogenic alteration of the nitrogen (N) cycle, specifically the increased rate of nitrate (NO3-N) deposition to aquatic environments, potentially altering host-parasite relationships. This study aimed to assess the mechanisms through which nitrate may impact host-pathogen relationships using a fungal pathogen (Metschnikowia bicuspidata) parasitic to crustacean zooplankton (Daphnia dentifera) as a tractable model system. First, the influence of nitrate on host population dynamics was assessed along a gradient of nitrate concentrations. Nitrate decreased host population size and increased infection prevalence. Second, the influence of nitrate on host reproduction, mortality, and infection intensity was assessed at the individual host level by examining the relationship between pathogen dose and infection prevalence at ambient (0.4 mg NO3-N*L(-1)) and intermediate (12 mg NO3-N*L(-1)) levels of nitrate. Host fecundity and infection intensity both decreased with increasing pathogen dose, but increased nitrate levels corresponded to greater infection intensities. Nitrate had no effect on host growth rate, suggesting that hosts do not alter feeding behavior in nitrate-treated media compared with ambient conditions. This study suggests that nutrient enrichment may enhance disease through increased transmission and infection intensity, but that high levels of nitrate may result in smaller epidemics through reduced transmission caused by smaller population sizes and increased pathogen mortality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Dynamics of a Simple Daphnia-microparasite Model with Dose-dependent Infection

Many experiments reveal that Daphnia and its microparasite populations vary strongly in density and typically go through pronounced cycles. To better understand such dynamics, we formulate a simple two dimensional autonomous ordinary differential equation model for Daphnia magnamicroparasite infection with dose-dependent infection. This model has a basic parasite production number R0 = 0, yet i...

متن کامل

Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations.

Parasites are ubiquitous and often highly virulent, yet clear examples of parasite-driven changes in host density in natural populations are surprisingly scarce. Here, we illustrate an example of this phenomenon and offer a theoretically reasonable resolution. We document the effects of two parasites, the bacterium Spirobacillus cienkowskii and the yeast Metschnikowia bicuspidata, on a common f...

متن کامل

Plankton Abundance and Dynamics across Nutrient Levels: Tests of Hypotheses

In lakes and reservoirs in which Daphnia is able to suppress the biomass of edible algae far below the level set by nutrients, the interaction is stable across the range of nutrient-poor to nutrient-rich environments. This phenomenon contradicts standard consumer–resource models, which predict that dynamics should become increasingly unstable with enrichment. We test four hypotheses that might ...

متن کامل

Competition-mediated feedbacks in experimental multispecies epizootics.

Competition structures ecological communities and alters host-pathogen interactions. In environmentally transmitted pathogens, an infection-resistant competitor may influence infection dynamics in a susceptible species through the negative impacts of competition (e.g., by reducing host density or causing nutritional stress that increases susceptibility to infection) and/or the positive impacts ...

متن کامل

Evidence for strong host clone-parasite species interactions in the Daphnia microparasite system.

Organisms are often confronted with multiple enemy species. Defenses against different parasite species may be traded off against each other. However, if resistance is based on (potentially costly) general defense mechanisms, it may be positively correlated among parasites. In an experimental study, we confronted 19 clones from one Daphnia magna population with two bacterial and three microspor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014